judgments <- read_tsv("https://biostat2.uni.lu/practicals/data/judgments.tsv", show_col_types = FALSE)
judgments
# A tibble: 188 × 158
start_date end_date finished condition subject gender age mood_pre
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 11/3/2014 11/3/2014 1 control 2 female 24 81
2 11/3/2014 11/3/2014 1 stress 1 female 19 59
3 11/3/2014 11/3/2014 1 stress 3 female 19 22
4 11/3/2014 11/3/2014 1 stress 4 female 22 53
5 11/3/2014 11/3/2014 1 control 7 female 22 48
6 11/3/2014 11/3/2014 1 stress 6 female 22 73
7 11/3/2014 11/3/2014 1 control 5 female 18 NA
8 11/3/2014 11/3/2014 1 control 9 male 20 100
9 11/3/2014 11/3/2014 1 stress 16 female 21 67
10 11/3/2014 11/3/2014 1 stress 13 female 19 30
# ℹ 178 more rows
# ℹ 150 more variables: mood_post <dbl>, STAI_pre_1_1 <dbl>,
# STAI_pre_1_2 <dbl>, STAI_pre_1_3 <dbl>, STAI_pre_1_4 <dbl>,
# STAI_pre_1_5 <dbl>, STAI_pre_1_6 <dbl>, STAI_pre_1_7 <dbl>,
# STAI_pre_2_1 <dbl>, STAI_pre_2_2 <dbl>, STAI_pre_2_3 <dbl>,
# STAI_pre_2_4 <dbl>, STAI_pre_2_5 <dbl>, STAI_pre_2_6 <dbl>,
# STAI_pre_2_7 <dbl>, STAI_pre_3_1 <dbl>, STAI_pre_3_2 <dbl>, …